
THE AMERICAN 8OClETY OF MECHANICAL ENGINEERS
345 F..47th St., New York, N.Y. 10017

The Society shai not be responsible tor statements or opinions advanced in papem or discussionat mee_ngs of the
Socllty or of its _ or Sectkx_ or printed tn its publicatiors. D_,,ussJon is _ only if the paper is published
in an ASME Journal. Authorization to photocopy material for internal or personal use under circumstance not
falling within the fair use provisionsOfthe CopydghtAct is granted byASME to librariesand other usem registered with
the Colwdg_ Clmnm_ Cantw (CCC) T_ Reporting Service I_OVidedtttat the base/se of $0.30 per page
is pelddkec_yto _e GGG,27C.,o_re_Sue_,SaJemMA0_970.Reque=storspec_pen.mionorbulkrsproduct_
_Jd be addremed to the ASME TechnicalPul_sh_g De_._aner_

_@ 1995 by ASME All Rights Reserved Printed in U.S.A.

N95- 32693

95-111"-216

SYNCHRONOUS DYNAMICS OF A COUPLED

SHAFT�BEARING�HOUSING SYSTEM WITH
AUXILIARY SUPPORT FROM A CLEARANCE

BEARING" ANALYSIS AND EXPERIMENT

James L. Lawen, Jr.

Auburn University
Auburn, AL 36849

George T. Flowers

Auburn University
Auburn, AL 36849

, f

/

/

/

ABSTRACT

This study examines the response of a flexible ro-
tor supported by load sharing between linear bear-
ings and an auxiliary clearance bearing. The objec-
tive of the work is to develop a better understand-
ing of the dynamical behavior of a magnetic bear-
ing supported rotor system interacting with auxil-
iary bearings during a critical operating condition.
Of particular interest is the effect of coupling be-
tween the bearing/housing and shaft vibration on
the rotordynamical responses. A simulation model
is developed and a number of studies are performed
for various parametric configurations. An experi-
mental investigation is also conducted to compare
and verify the rotordynamic behavior predicted
by the simulation studies. A strategy for reduc-
ing sychronous shaft vibration through appropriate
design of coupled shaft/bearing/housing vibration
modes is identified. The results are presented and
discussed.

NOMENCLATURE

C = damping, N-sec/m
K = stiffness, N/m
Mb = auxiliary bearing mass, kg.
Mh -- housing mass, kg.
N = total number of modes considered
Nbl = node number at leftmost bearing
Nbz = node number at rightmost bearing
Nb3 = node number at auxiliary clearance bearing
Qx = rotor modal coordinate vector in X direction
Q_ = rotor modal coordinate vector in Y direction

t = time, s
X_ = rotor physical coordinate vector in X

direction, m
Y_ - rotor physical coordinate vector in Y

direction, m
Xb = auxiliary bearing physical coordinate vector

in X direction, m
Yb = auxiliary bearing physical coordinate vector

in Y direction, m
Xh = housing physical coordinate vector in X

direction, m
Yh = housing physical coordinate vector in Y

direction
A = radial clearance in auxiliary bearing, m

Is = rotor polar mass inertia matrix, kg-m 2
= rotor free-free modal rotation matrix
= rotor free-free modal displacement matrix

F = kI'TI=_

= rotoroperatingspeed,rad/s
w,_= matrix ofrotorfree-freenatural

frequencies, rad/s
_., = imbalance vector
Subscripts
bx = auxiliary bearing, x-direction
by = auxiliary bearing, y-direction
c = contact
hx = housing, x-direction
hx - housing, y-direction
xr - rightmost bearing, x-direction
xl = leftmost bearing, x-direction
yr -- rightmost bearing, y-direction
yl - leftmost bearing, y-direction
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INTRODUCTION

In recent years, the use of active magnetic bear-
ings for supporting turbomachinery has been an
area of interest for both academic researchers and

turbomachinery users in industry. Magnetic bear-
ings provide the potential for significant improve-
ments over other types of rotor support, including
elimination of wear and bearing friction-related en-
ergy losses as well as a means of actively suppress-
ing rotor vibration. However, their use has been
significantly limited due to a number of technical
problems. A particular area of concern is the aux-
iliary bearing, which protects the soft iron core of
the magnetic bearing and provides rotor support in
case of overload or failure of the magnetic bearing.

Typically, the auxiliary bearings have relatively
small clearances so that magnetic bearing ro-
tor/stator contact does not occur during bearing
failure or power loss. Due to these small clear-
ances, contact between the rotor system and the
auxiliary bearings can occur during standard oper-
ation of the magnetic bearings. When this occurs,
load sharing between the magnetic bearings and the
auxiliary bearings results, and the rotor system in-
teracts with its auxiliary bearings. The dynamics
of such an occurrence must be understood in order

to properly design the auxiliary bearing system for
a magnetic bearing supported rotor.

A number of different bearing types have been
suggested as auxiliary bearings. These include
bushings, rolling element bearings, and various
types of journal bearings. The most commonly
considered are rolling element bearings. The ma-
jor disadvantage associated with using rolling ele-
ment bearings (or bushings) is the requirement of
a clearance between the rotor and the inner race of

the bearing, without which many of the advantages
associated with using magnetic bearings would be
reduced or eliminated. This clearance introduces
a nonlinear dynamical feature which may signifi-
cantly impact the behavior of the rotor.

There are quite a number of studies in the lit-
erature concerned with nonlinear rotordynamics.

Ehrich (1965 and 1967) studied the rotor/stator
interaction with a clearance and found zones of
bistable synchronous behavior. Black (1968) also
found these bistable interaction zones. Ehrich ex-
tended this research by predicting subharmonic
behavior (1966 and 1988), superharmonic behav-
ior (1992), and chaotic responses (1991). Bently
(1974), Muszynska (1984), and Childs (1979 and
1982) also observed and studied subharmonic re-
sponses due to clearance effects.

There is relatively little work available in the
open literature that is specifically concerned with
the dynamics between the rotor system and the
auxiliary bearings. The research that ha.s been

performed to date is primarily concerned with the
transient behavior of rotor drop on the auxiliary
bearings due to power faliure or inoperative mag-
netic bearings. Two papers with this focus are
Gelin et al.,(1990) and Ishii and Kirk (1991).

The present work is concerned with developing
an understanding of the dynamic behavior of a
rotor system supported by load sharing between
the linear bearings and an auxiliary bearing with
clearance. Of particular interest is the influence of
coupled shaft/bearing/housing vibration modes on
the rotordynamical behavior of such a system.

SIMULATION MODEL

Figure 1 shows the simulation model used for
this investigation. It consists of a flexible rotor
supported at both ends by magnetic bearings. A
rigid disk with adjustable imbalance is placed at the
midpoint of the bearing span. As a simplification,
the magnetic bearings are modeled as spring, and
dashpot systems and interaction with a stogie
auxiliary bearing is considered. The auxiliary
bearing was modeled as an antifriction bearing with
a clearance and a mass attached to a housing. The
housing in turn has a mass, stiffness, and damping.
Figure 2 shows the auxiliary bearing model used in
the simulation.

RigidDisk

Flexible\\Shaft

M_nctic Bearing

AuxiliaryBearing
With Clearance

N_._ic Beating

Figure 1 Schematic Diagram of Simulation Model

The rotor is modelled using the free-free bend-
ing mode shapes and natural frequencies obtained
through finite element analysis. The finite element
code uses 19 stations and the first four modes (two
rigid body and two flexible modes) are included in
the simulation model.

Using these simplifications, the equations of mo-
tion for the system can be written as follows:



= @TF_j,,,b,
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MbXb'_--_-_ ,, --Rh) "b Kbx(Xb --Xh)

= Fx,,,, (1.c)

MbYb-t--_(Yb -- Yh) + Kb_(Yb -- Yh)

The physical displacements of the rotor at the
auxiliary bearing or magnetic bearing locations
can be obtained using the following coordinate
transformation:

N

Xrk - E _ki Qzi,

i=l

N

Y_k = _ _ki Q_i,
i=l

(k = Nbl, Nb2, Nb3)

Xr ---- {Xrl,Xr2,...,Xrm} T,

y,. = {y,,,y,_,...,y,.,_}T.

(m = total number of nodes)

Figure 2 Auxiliary Bearing Model
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EXPERIMENTAL MODEL

Experimental tests were performed in order to
validate the behavior predicted by the simulation
model and to gain some insight into the dynamical
responses that are to be expected. A schematic
diagram of the rotor test rig that was used in the
experimental work is shown in Figure 3.

The rotor used in this study has two basic
components: a flexible shaft and an auxiliary
clearance bearing. The shaft is made of steel
and is 0.374 inches in diameter and 18.0 inches
in length. It is supported at 1.0 inch from the
right end by ball bearings suspended in a frame
by four springs and at 1.0 inch from the left end by
a bushing with a tight clearance. These supports

with

/
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¢=lifS>A

0 otherwise

Q_ = @-iX.,
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Fy,imb = _f_2 sin_t,

= Fz,,,a, (1.d)
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Figure 3 Experimental Model

represent the magnetic bearings. The stiffness of
the left support is 17511 N/m (101.5 lb/in) for
both the horizontal and vertical directions. It
is used to somewhat isolate the rotor from the
effects of the flexible coupling which attaches the
rotor to the motor and to enforce low amplitude
v_ration at this location to protect the motor. The
stiffness of the right support, for both horizontal
and vertical directions, is 2539 N/m (14.5 lb/in).
This lower stiffness allows for significant vibration
of the rotor in the speed range of the motor. A
rigid disk with an adjustable imbalance is placed
at the midpoint of the bearing span. The auxiliary
deaxance bearing/housing consists of a bushing
suspended in a frame by four springs (Figure 4).
It is situated at the right end of the rotor. The
clearance is adjustable by changing the bushing.
The auxiliary bearing/housing stiffnesses are varied
by interchanging the springs.

The rotor is driven by an adjustable speed mo-
tor with feedback speed controller. Shaft vibration
is measured using eddy current proximity displace-
ment sensors fixed so as to measure displacement
in the vertical and horizontal directions. The dis-

placement signals were recorded and analyzed with
a signal analyzer.

Rig Base
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Figure 4 Auxiliary Clearance Bearing

DISCUSSION

A series of parallel studies were conducted using
the simulation and experimental models discussed
in the preceding sections. The following discussion
is aimed at comparing the predictions of the simula-
tion model with experimentally observed responses,
with the objective of obtaining insight into the be-
havior of flexible rotor system dynamics due to load
sharing between the magnetic bearings and an aux-
iliary bearing.

Using the data from measurements and calcula-
tions, the stiffness, damping, and mass character-
istics of the experimental rotor system were identi-
fied. The imbalance configuration consists of 3.0 x

10-e kg-m located at the left end of the rotor shaft
(from the flexible coupling to the electric motor)
and a variable imbalance located on the rigid disk.
Linear, hysteretic, and coulomb friction damping
models were considered. The support damping ap-
pears to result principally from hysteresis. If syn-
chronous vibration is assumed, this results in a
damping coefficient scaled by the rotor speed. The
numerical values are given in Table 1.

The governing parameters for an auxiliary bear-
ing are stiffness, mass, damping, clearance, and ax-
ial location. The axial location generally is fixed
by other considerations, such as space requirements
and the need to be close to the magnetic bearing
to better protect it. This study focusses on the
remaining design parameters. For the system stud-
ied, significant nonsynchronous vibration occured
only for the 2_ component and for a limited ro-
tor speed range. Figure 5 illustrates the observed
behavior for various imbalance values. The ampli-

tudes are quite small and, interestingly, virtually
independent of imbalance. The remainder of this
discussion will focus on the synchronous response
amplitudes.

4



Parameter Value Units

Kb 471 N/m

Kh

Kc

KIx, Kly

Krx, Kq,

Cix, Cly

Crx, Cry

Ct_,, Ci_,

Cry, Cry

Cbx, Cby

Chx, Ch r
Mb

Mh

¢1
'¢'1o

A

1.8xlO T

87,557

N/m
N/m

17,510 N/m

2,539 N/m

1,000 N/m

500 N/m

1,000 N/m

500 N/m

2,000 N/m

0 N/m

0.033 kg

0.296

3.0 x 10 -e

2.5 x 10 -5

5.0x10 -5

kg

kg-m

kg-m

m

Table 1 Simulation Model Parameters
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Figure 5 Experimental Results for
2w Component

The simulation responses discussed below were
determined from a single-term harmonic balance
analysis that was numerically implemented and ver-
ified at selected points using direct numerical inte-
gration of the governing equations of motion. The
harmonic balance procedure is described by Nayfeh

and Mook (1979). Figures 6.a - 6.e show the re-
sponse amplitudes predicted from the simulation

study for the parameters of Table 1. Figures 7.a -
7.c show some corresponding experimental results.

The rotor speed range extends to above the second
critical speed, with the first critical speed primar-

ily a rotational mode and the second critical speed

primarily a translational mode.
Figures 6.a presents simulation results for vary-

ing auxiliary bearing stiffness and Figure 7.a shows
the corresponding experimental values. There is
relatively good agreement between the actual and
predicted responses except for the peak values
which are very sensitive to damping. At lower ro-
tor speeds, the stiffness effect from the auxiliary
bearing tends to dominate and serves to increase
the effective lower critical speed. At higher ro-
tor speeds, the inertial effects of the bearing tend
to dominate and the added mass serves to lower
the effective second critical speed. This effect is
balanced somewhat for higher stiffnesses (as is ex-
pected), as can be seen for the case with Kb=2,625
N/m. The damping added to the system from the
auxiliary bearing serves to attenuate the peak re-
sponse amplitudes for both critical speeds. The re-
sponse amplitudes between the two response peaks
are affected little by the auxiliary bearing, with the
rotor and bearing/housing vibrations tending to
decouple for response ampfitudes below the clear-
ance. Above the second critical speed, the pres-
ence of the auxiliary bearing serves to reduce the

response amplitudes for the remainder of the plot.
For this region, there is significant coupling be-
tween the rotor/bearing/housing vibration and the

response amplitudes are below the clearance for
speeds greater than about 550 rad/sec. The ro-
tor speed ranges for which coupling of the ro-
tor/bearing/housing vibration will occur depend

upon the phase of the combined system response,
as described by Black (1968). For the purposes of
this study, Kb=471 N/m is chosen as a reasonable
value and variations of other parameters are per-
formed with this auxiliary bearing stiffness.
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Figure 6.a Simulation Results for Varying
Auxiliary Bearing Stiffness
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Figure 6.b Simulation Results for Varying
Auxiliary Bearing Mass
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Figure 6.d Simulation Results for Varying
Imbalance
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- Figure 6.e Simulation Results for Varying
Auxiliary Bearing Damping

Figures 6.b shows the predicted rotor response
for the parameters of Table 1 with the bearing mass
varied. These results show that the more massive

bearing/housing configurations can result in much
lower amplitude rotor responses. In fact, for suffi-
ciently high mass values, the response amplitude is
dramatically reduced for the rotor speed range from
about 600 rad/sec to about 780 rad/sec where it

merges with other amplitude response curves. Fig-
ure 6.c shows the effect of auxiliary bearing damp-

ing on the rotor response. While the response am-
plitudes remain relatively unchanged for the ma-
jority of rotor speeds, higher damping does serve
to significantly reduce the rotor response ampli-
tudes through the critical speeds. Damping also
effects the phase characteristics of the combined

rotor/bearing/housing system and changes the ro-
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Figure 6.e Simulation Results for Varying
Auxiliary Bearing Clearance

tot speed ranges for which coupled responses occur.
Figures 6.d and 7.b show the rotor response for the
parameters of Table 1 with the imbalance varied.
As expected, the response amplitudes increase with
increasing imbalance. Figures 6.e and 7.c show the
rotor response amplitudes with the auxiliary bear-
ing clearance varied. As the clearance increases, the
dynamics of the combined rotor/bearing/housing
vibration tend to decouple over a wider speed range
between the two critical speeds. Again, such be-

havior is expected from the analysis work for a ro-
tor operating in an annular clearance performed by

Black (1968).
Close examination of the above results reveals a

very interesting trend. Turbomachine are designed
to operate at rotor speeds between the various sys-
tem critical speeds so as to minimize synchronous
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response amplitudes. For the present system, the
lowest amplitude responses (for operation above
the second critical speed) occur for the auxiliary
bearing configurations where there is the largest de-
crease of the second effective critical speed, which
is due to a coupling of rotor/stator/housing vibra-
tion. While not really suprising, this result indi-
cates an interesting strategy for the design of aux-
iliary support using clearance bearings. Selection
of combined shaft/auxiliary bearing/housing vibra-
tion characteristics such that the effective critical

speeds nearest the operating speed (directly above
and below) shift away from it should result in lower
amplitude rotor vibration and provide the best op-
portunity to protect the magnetic bearing. How-
ever, the phase characteristics of the combined sys-
tem must be such that vibration coupling occurs

5e-04 [ i , i , I i , i ,
L _- - w/oaux.bear.

iL*--, A
4e-04 p n_,---_ A=1.5e-4 -

E,E 3e-04
>" 2e-04

0 200 400 600 800 1000
w (rad/s)

Figure 7.c Experimental Results for Varying
Auxiliary Bearing Clearance

and care must be taken to ensure that this is the
case if the maximum benefit is to be derived from

the auxiliary bearing.

CONCLUSIONS

A study of the dynamical behavior of a flexible
rotor supported by linear bearings (representing a
set of magnetic bearings) and an auxiliary bearing
with clearance has been presented. Parallel sim-
ulation and experimental studies have been per-
formed for a variety of parametric configurations.
The influence of bearing mass, stiffness, damping,
clearance, and imbalance were examined. It was
observed that the dynamic behavior of a rotor in-
teracting with an auxiliary bearing depends very
strongly on the structural parameters of the auxil-
iary bearing and associated housing. Appropriate
selection of these parameters is critical if acceptable
vibration characteristics are to be obtained for such
systems. In general, one must carefully consider the
influence of housing/bearing dynamics and how to
best take advantage of favorable coupled modes of
vibration in the development of auxiliary bearing
designs.
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